EL+ vHiL

Regenerative AC/DC Electronic Load

The EL+ vHiL is CINERGIA's Current Source optimized in performance and price for Power Hardware in the Loop applications. This version keeps the software and functionalities of CINERGIA's EL+ vAC and it includes Power Amplifier functions to interface with Real Time Control Systems.

Key features

Bidirectional and Regenerative Clean grid current: THDi < 3% and PF > 0.98

13 models from 7.5kW to 160kW Parallelization of units to increase the power

Emulation of grid-connected devices:
Loads absorbing energy from grid.
Generators injecting energy to the grid.
Programmable Active/Reactive consumption
Non-linear currents up to CF of 3

Independent phase con guration of: rms current, phase angle, harmonics, interharmonics, generation of fast transients ("Current Dips")

Intuitive User Interface Modbus/Ethernet Open protocol, Labview drivers

Highlights

Efficiency and Flexibility

Save Energy, Power and Time

Optimitzed version for PHiL

Smartgrids & Electrical Vehicles

Power Amplifier

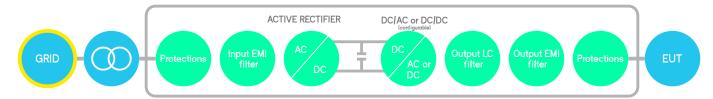
Applications

Electrical Vehicles and EVSE

Power HIL

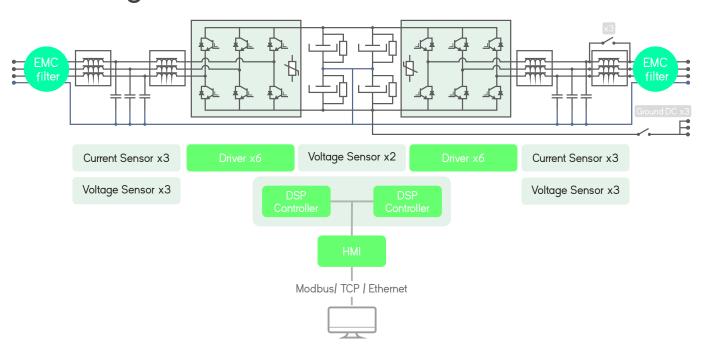
PV Inverter Emulation

Battery Testing and Emulation



Smartgrids and ESS

Avionics


Bidirectional and Regenerative Hardware

The hardware platform is based on a Back-to-Back power conversion topology, formed by two IGBT-based power stages. The grid side stage is an Active Rectifier which produces clean sinusoidal currents with very low harmonic distortion and power factor close to one.

The EUT side stage can be configured for AC voltage source or AC current source or DC output. In AC, voltage/current are controlled by using state of the art digital Proportional-Resonant controllers. In DC, the three independent buck-boost bidirectional legs enable the separated control of three different DC voltages or currents.

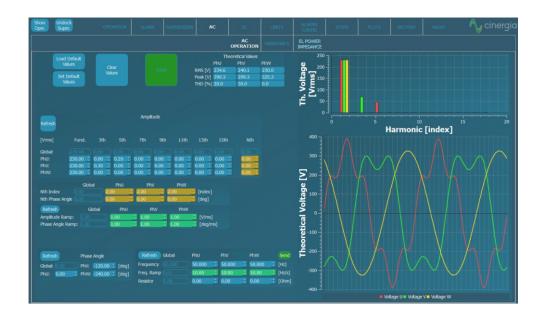
Block diagram

Local Interface

Analogue and Digital IO ports

The isolated digital and analogue inputs/outputs permit the connection of the unit to External Controllers and Power Hardware in the Loop systems (option).

4.3" Touchscreen

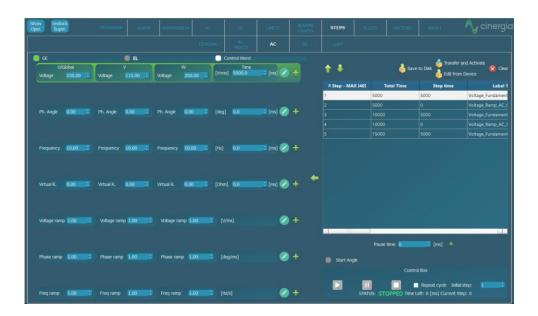

Allows the local parameterization and command of the device, configuration of the communications link, plots the main signals and enables the local datalogging.

Safety First

The units integrate a local Emergency Stop pushbutton and two signals (input + output) to be connected to the laboratory interlock system. Additionally, the digital outputs can be interfaced to safety tower lights.

Software Interface in EL+ modes

AC Operation
From this panel, the user can set all AC parameters.
Each phase can be independently configured:
RMS current magnitude, phase delay, harmonics content, free-frequency harmonic and transition ramps. A plot shows the expected real-time waveform, the FFT representation and the numeric data: RMS, peak, CF and THD.


Harmonics

The device can control simultaneosly the magnitude of the first 15 harmonics and one free harmonic per phase.
The free one allows the generation of sub-harmonics, inter-harmonics and high frequency harmonics up to the 50th, setting both the magnitude and phase delay.

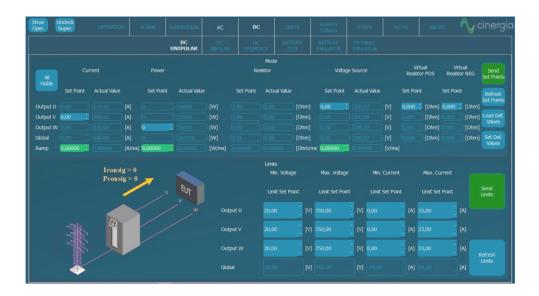
Power and Impedance Control In Power mode, the active and reactive power of each phase is independently controlled. In Impedance mode, the device emulates an RLC load allowing to parameterize resistance, inductance and capacitance per phase making this device suitable for Anti-Islanding test of grid converters.

Advanced AC Software Applications

Steps Mode

One of the most remarkable novelties of the new software is the steps funcionality. Step test files are saved and executed by the DSP allowing deterministic timing with a resolution of 66µs. The user gains access to all registers of the device to create complex test sequences which run directly in the converter without the need of an external computer.

Disturbance Generation


The steps mode includes predefined easy-to-use test panels. The AC faults panel is a powerful yet intuitive editor which allows generating and configuring flicker.

Specific profiles can be saved in .csv files, modified, and reused by importing an existing one.


Lineal & Non-Lineal Emulation
The capacity to emulate linear
and non-linear loads is one of
the main features of the 4Q
Electronic Load. Through our
intuitive control software, the
magnitude of harmonics can
be set and different types of
loads can be generated.

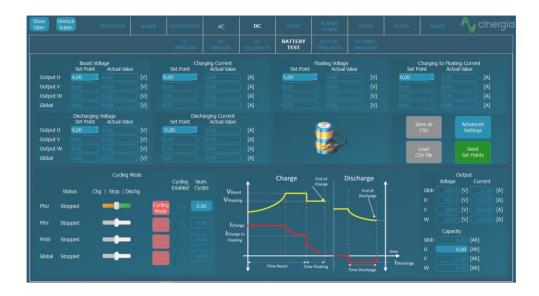
Software Interface in DC

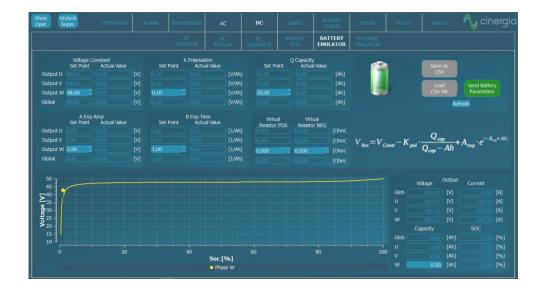
DC Operation

This panel allows the user to access all DC setpoints and limits. Thanks to the unique Multichannel feature, each phase can have a different Operation Mode: voltage, current, power, resistance and advanced DC applications. Transition ramps, voltage and current limits can be modified. The limits for sink and source operation are different for safer testing, specially in battery applications.

Sequence

The User Interface Software integrates a Sequence Editor to create automatic test sequences, save them for future use and import them in .csv files.


A smart datalogger can be activated from the LCD of the unit to record automatically the resulting voltage and current measurements with a time resolution of 400 ms.


Multichannel

Enabling the Separated Channel Control converts the device in three functionally independent DC Bidirectional Power Supplies, sharing the common negative rail. Each channel can have a different status (ON, OFF, Warning, Alarm), Operation Mode (see Range and Specifications table), Setpoint, Ramp and Limits.

Advanced DC Applications

Battery Pack Testing (option)
This functionality enables the user to precisely control the charge, discharge and cycling of a Battery. Basic parameters include the charge/discharge current, fast charge and floating voltages while Advanced parameters add Energy (Ah) and Time as transition conditions. Profiles for each Battery technology can be saved and imported in .CSV files.

Battery Emulation (option)
The B2C+ integrates a
mathematical model to
emulate the voltage
behaviour of a real battery
pack. The output voltage
will change as a function of
the SOC and Current. By
configuring the provided
parameters, the voltage
profile can be adjusted to
match different technologies:
Lilon, NiMH, NiCd, Pb, Flux,
etc...

PV Panel Emulation (option)
The PV Panel model is based on the single-diode equivalent circuit of a PV cell and the series-parallel connection of cells to form a panel. A Runtime functionality allows the simulation of a complete day by launching different irradiance and temperature setpoints from a .csv file, enabling the user burn-in and functional tests of PV Inverters.

EL+ vHiL Range & Specifications

Input side (GRID side)

AC Voltage

Rated: 3x400Vrms + Neutral + Earth

Range: +15% / -20% Rated AC Current

Depends on model (see Wiring Manual)

Frequency 48-62Hz

Current Harmonic Distortion THDi < 3% at rated power Current Power factor PF > 0.98 at rated power

Efficiency

 \geq 89% (7.5 & 10), \geq 91% (15 to 30), \geq 92% (40 to 200)

Output side in DC (EUT side)

Terminals

Number: 6 (3 positive + 3 negative)

Configuration of Channels

Unipolar Independent: 2Q, independent setpoints per channel Unipolar Parallel: 2Q, one global setpoint for all channels

Multichannel: 2Q, independent start/stop, operation mode and setpoints per

channel (note: multichannel is an option for ≥ 80kVA)

Bipolar (4Q two independent setpoints)

Voltage Mode (CV)

Range: 20: 20⁽¹⁾ to 750V (800V with High Voltage option)

4Q: 0 to +350V / 0 to -350 (+ rail / 0 / - rail, Bipolar configuration)

Setpoint Resolution: 10mV

Effective Resolution^[2]: < 0.05% of FS^[3] Setpoint Accuracy^[4]: $\pm 0.1\%$ of FS^[3]

Transient Time⁽⁵⁾: < 1ms (10% to 90% at a step to Vrated)

Ripple⁽⁷⁾ (peak-peak): < 0.55% of FS⁽³⁾

Current Mode (CC)

Range: from 0 to ± 110% of Irated (see models table)

Setpoint Resolution: 10mA

Effective Resolution^[2]: < 0.05% of FS^[3] (< 0.1% models 7.5 & 10)

Setpoint Accuracy (4): ± 0.2% of FS

Transient Time⁽⁵⁾: < 1ms (10% to 90% at a step to Irated)

Ripple⁽⁷⁾ (peak-peak): < 0.7% of FS⁽³⁾

Power Mode (CP)

Range: from 0 to \pm 200% of Prated (see models table)

Derived current setpoint: Psetpoint / Vmeasured

Setpoint Resolution: 1W

Effective Resolution $^{(2)}$: < 0.1% of FS $^{(3)}$ (< 0.25% models 7.5 & 10)

Setpoint Accuracy⁽⁴⁾: ± 0.4% of FS⁽³⁾

Transient Time⁽⁵⁾: < 2.5ms (10% to 90% at a step to Prated)

Resistance Mode (CR)

Range: from 0.1 to 1000 Ohm

Derived current: Vmeasured / Rsetpoint

Setpoint Resolution: 0.01 Ohm

Setpoint Accuracy (4): ± 0.2% of FS(3)

Transient Time⁽⁵⁾: < 2ms (10% to 90% at a step to Rrated))

Output side in AC (EUT side)

Terminals

Number: 4 (3 phases + 1 neutral)
Configuration of Channels

Independent: 4Q, independent setpoints per phase
Multichannel: 4Q, independent start/stop, alarm status and
setpoints per phase (note: multichannel is an option for 2 80kVA)

Output side in EL-AC

Admissible Voltage

Connection: 1-phase or 3-phase star (consult us for 3-phase delta)

Maximum: ± 400V peak

Ranae: 10-100Hz

 $35^{\mbox{\tiny (1)}}$ to 277Vrms phase-neutral (295Vrms with HV option) $35^{\mbox{\tiny (1)}}$ to 480Vrms phase-phase (510Vrms with HV option)

> 100Hz: maximum rms voltage follows V·f < 46000

Frequency: 10 to 400Hz Current Mode (CC)

Range: from 0 to ± 200% of Irated (see models table)

Setpoint Resolution: 10mArms Effective Resolution $^{[2]}$: < 0.05% of FS $^{[3]}$ (< 0.1% models 7.5 & 10) Setpoint Accuracy $^{(4)}$: < \pm 0.2% of FS $^{[3]}$

Transient Time⁽⁵⁾: < 1.5ms (10% to 90% at a step transient)

Ripple $^{(7)}$ (peak-peak): < 0.7% of FS $^{(3)}$ (with Low Ripple Inductor option) $^{(7)}$

Phase Angle (cos ϕ)

Range: -90 to 90° in Sink / Source

Resolution: 0.01°

Harmonics

Range: up to 50th

15 independent harmonics per phase:

14 fixed frequency multiple of f₀: 2,3,4,5,6,7,8,9,10,11,12,13,14,15

1 free programmable frequency from 0.1 to 50 times $f_{\scriptscriptstyle 0}$

Harmonics content: V·f < 46000 (with current derating)

Setpoint Accuracy (4): same as current accuracy

Small Signal Bandwidth: up to 5000Hz⁽⁹⁾

Transient Time (5): < 2ms (10% to 90% at a step change)

Power Mode (CP / CS)

Range: from 0 to ± 200% of Prated (see models table)

Derived current setpoint: calculated from |S| and $\Phi(S)$

Setpoint Resolution: 1W, 1VA

Effective Resolution^[2]: 4 0.1% of FS^[3] (4 0.25% models 7.5 & 10)

Setpoint Accuracy⁽⁴⁾: ± 0.4% of FS⁽³⁾
Transient Time⁽⁵⁾: < 2.5ms (10% to 90% at a step to Prated)

Impedance Mode (CZ)

Range: from 0.8 to 1000 Ohm, 0.1 to 2000mH, 0 to 3.7mF

Derived current/phase setpoint: calculated from |Z| and $\Phi(Z)$

Setpoint Resolution: 0.01 Ohm/mH/mF

Setpoint Accuracy (4): see current accuracy
Transient Time (5): < 2.5ms (10% to 90% at a step to Rrated)

Operation Modes

DC

Programmable Current (CC)

Power Amplifier (HiL)

Optional Programmable Voltage (CV) Optional Programmable Power (CP) Optional Programmable Resistance (CR)

Optional Battery Testing (BTest) (charge/discharge/cycling)

Optional Battery Emulation (Bemu) Optional PV Panel Emulation (PVEmu)

AC

Programmable Current (CC) Power Amplifier (HiL)

Optional Programmable Power (CP / CS) Optional Programmable Impedance (CZ)

Overload Overcurrent

Admissible DC overcurrent is: 110% of rated value during 1 minute Admissible AC overcurrent: 125% of rated value during 10 minutes,

150% during 1 minute, 200% during 2 seconds

Admissible overloads: 125% of rated value during 10 minutes,

150% during 1 minute, 200% during 2 seconds

User Interface

Local Control (4.3° Touchscreen panel)

Isolated Digital port: 6 inputs, 4 outputs

Isolated Analogue port: 6 inputs (rms setpoints or power amplifier)

6 outputs (rms readback or real-time readback)

Interlock port: 1 NC Input, 1 NO Output

Emergency Stop pushbutton

Remote Control Port

LAN Ethernet with Open Modbus-TCP protocol

RS485 (option), CAN and RS232 (using external gateway)

Graphical User Interface for Windows 7/10

LabView drivers and open Labview interface example

Protections

Overvoltage (peak, rms), Overcurrent (peak, rms), Overload Shortcircuit, Emergency Stop, Watchdog, Heart Beat, Output

Contactor, Wrong Configuration

Alarms and Limits are user configurable and can be saved in a

password protected EEPROM

Mesurements ⁽⁶⁾ Grid Voltage (rms), Current (rms), Power (P,Q) and Frequency

Output Voltage (rms, avg), Current (rms, avg), Power (P,Q) and

Frequency

Heatsink Temperatures (x2) and DC Link Voltage Datalogging available through FTP connection

Ambient

Operating temperature (8): 5-40°C

Relative Humidity: up to 95%, non-condensing

Cooling: Forced air

Acoustic noise at 1m: < 52dB(A) (7.5 to 60), < 65dB(A) (80 to 120), < 70dB(A) (160 and 200)

Standards

CE Marking

Operation and Safety: EN-50178, EN-62040-1

EMC: EN-62040-2

RoHS

All specifications are subject to change without notice

Save Energy Save Power Save Time

Unit Under Test

All specifications are subject to change without notice.

(1) Minimum voltage setpoint is 0V in DC. The recommended minimum setpoint for long-term use is 20Vrms in AC and 20V in DC.

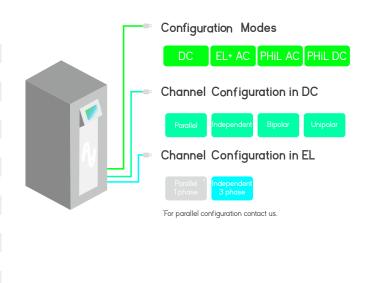
(2) Effective resolution measured with a 400ms window

(3) FS Range of voltage is 800V (with High Voltage option)

FS Range of current is 2| 110% to Irated (see models table)

FS Range of power is 2| 200% to Prated (see models table)

(4) Accuracies are valid for settings above 10% of FS
(5) Measured with the rated resistive load and high-dynamics controllers configuration
(6) Accuracy of measurements is ±0.1% of FS for rms voltage, ±0.2% of FS for rms current, ±0.4% of FS for active power (valid only above 10% of FS)
(7) Consult us for lower voltage/current ripple requirements
(8) Rated power figures are given at 20°C
(9) The maximum output voltage depends on frequency following V·f < 46000


Models

EL+ vHiL

Reference	AC Power	DC Power Rated (9)	AC Current Rated ⁽⁹⁾ RMS Per phase / Parallel	DC Current Rated ⁸⁹ RMS Per phase / Parallel	Weight (kg)	Dimensions DxWxH (mm)		
EL+7.5 vHiL	7.5kW	3.75kW	11A / 33A	±5A / ±15A	155 kg	770x450x1100 mm		
EL+10 vHiL	10kW	5kW	15A / 45A	±7.5A ±22.5A	155 kg	770x450x1100 mm		
EL+15 vHiL	15kW	7.5kW	22A 66A	±10A / ±30A	155 kg	770x450x1100 mm		
EL+20 vHiL	20kW	10kW	29A 87A	±12.5A / ±37.5A	155 kg	770x450x1100 mm		
EL+30 vHiL	27kW	13.5kW	40A / 120A	±15A / ±45A	155 kg	770x450x1100 mm		
EL+40 vHiL	40kW	20kW	58A / 174A	±20A / ±60A	190kg	770x450x1100 mm		
EL+50 vHiL	50kW	25kW	73A / 219A	±25A / ±75A	190kg	770x450x1100 mm		
EL+60 vHiL	54kW	27kW	80A / 240A	±28.5A / ±85.5A	190kg	770x450x1100 mm		
EL+80 vHiL	80kW	40kW	116A / 348A	±52.5A / ±157.5A	270kg	880x875x1320 mm		
EL+100 vHiL	100kW	50kW	145A / 435A	±65A / ±195A	295kg	880x875x1320 mm		
EL+120 vHiL	108kW	54kW	157A / 471A	±65A / ±195A	295kg	880x875x1320 mm		
EL+160 vHiL	145kW	72.5kW	211A / 633A	±77.5A ±232.5A	545kg	850x900x2000 mm		
EL+200 vHiL	160kW	80kW	232A 696A	±92.5A ±277.5A	555kg	850x900x2000 mm		
All specifications are subject to chan	All specifications are subject to change without notice.							

Galvanic Isolation (optional)

		Circuit Breaker Recommended	Weight (kg)	Dimensions DxWxH (mm)
	IT 7.5i	Type C - 25A	145 kg	Inside the cabinet
	IT 10i	Type C - 25A	145 kg	Inside the cabinet
	IT 15i	Type C - 32A	145 kg	Inside the cabinet
	IT 20i	Type C - 40A	145 kg	Inside the cabinet
	IT 30i	Type C - 50A	195 kg	Inside the cabinet
	IT 30e	Type D - 80A	174 kg	595x415x708 mm
	IT 40e	Type D - 100A	217 kg	789x490x865 mm
	IT 50e	Type D - 125A	280 kg	789x490x865 mm
	IT 60e	Type D - 160A	381 kg	789x490x865 mm
	IT 80e	Type D - 200A	435 kg	964x684x1252 mm
	IT 100e	Type D - 250A	458 kg	964x684x1252 mm
	IT 120e	Type D - 315A	514 kg	964x684x1252 mm
	IT 160e	Type D - 400A	612 kg	964x684x1252 mm
	IT 200e	Type D - 500A	753 kg	1192x744x1430 mm

Options

Choose your options

- Galvanic Isolation
- Multichannel mode: allows different operation mode, start/stop/reset per channel (included in all models from 7.5 to 60, both included)
- 30kHz Switching Frequency: only available for models 15 (derated to 7.5kW), 20 (derated to 7.5kW) and 30 (derated to 10kW)
- Isolation monitor (advised for IT systems)
- Low current ripple inductance (included in all models ≤54kW, optional for models ≥80kW)

- High Frequency 360 900 Hz
- Anti-islanding monitor (only advised in net injection to the grid and following local regulations)
- High Voltage (HV): voltage up to 295Vrms phase-neutral in AC up to 800V in DC.
- RS485
- Battery Emulation Battery Test PV
- CV CV
- CP CP/CS
- PV Panel EmulationCR
- CZCP/CS

CINERGIA, Regenerative Power Electronics Solutions

- Grid Emulators AC, DC, AC/DC
- Electronic Loads, AC, DC, AC/DC, HF (360-900Hz)
- Didireccional DC, Battery Emulators, PV Panel Emulators

Pintor Roig i Soler, 10 08916, Badalona, BARCELONA www.cinergia.coop cinergia@cinergia.coop